TD 5: Diagonalisation (2) (Indications)

Indications pour l'exercice 1 :

- 1. Se souvenir que lorsque p est un projecteur de E on a : $E = \text{Ker}(p) \oplus \text{Im}(p)$. Prendre alors la concaténation d'une base de Ker(p) et d'une base de Im(p) et remarquer que Im(p) = Ker(p Id).
- 2. Se souvenir que lorsque s est une symétrie de E on a : $E = \text{Ker}(s \text{Id}) \oplus \text{Ker}(s + \text{Id})$.

Indications pour l'exercice 2:

- 1. Remarquer que λ est valeur propre de A si et seulement si $\det(A-\lambda I)=0$. Raisonner ensuite par l'absurde en supposant que A est diagonalisable, que peut on dire de la matrice diagonale semblable à A?
- 2. λ est valeur propre de B si et seulement si $\det(B \lambda I) = 0$. Commenter le nombre de valeurs propres distinctes obtenues.
- 3. λ est valeur propre de C si et seulement si $\operatorname{rg}(C-\lambda I)<3$. Faire des opérations sur les lignes pour obtenir une CNS sur λ , puis étudier les dimensions des sous-espaces propres associés.
- 4. Faire comme à la question précédente, ou bien montrer par un raisonnement plus simple que 0 est l'unique valeur propre possible et raisonner comme à la question 1 pour montrer que D n'est pas diagonalisable.

Indications pour l'exercice 3:

- 1. Il suffit de calculer AX_1 et de commenter le résultat obtenu.
- 2. Trouver les autres valeurs propres en étudiant le rang de $A \lambda I$ pour $\lambda \in \mathbb{R}$.
- 3. Commenter le nombre de valeurs propres distinctes. La P recherchée est la matrice de passage de la base canonique à une base de vecteurs propres.

Indications pour l'exercice 4:

- 1. Pivote de Gauss
- 2. Mettre sous forme échelonnée $A(a) \lambda I_3$. Traiter à part le cas a = 1 et le cas $a \neq 1$.
- 3. Conjecturer la réponse et raisonner par récurrence.

Indications pour l'exercice 5 :

- 1. Utiliser les sous-espaces propres de p et le fait que $p \neq 0$
- 2. Utiliser les sous-espaces propres de p et le fait que $p \neq \text{Id}$.
- 3. Les sous-espaces propres trouvées aux questions précédentes devraient fournir la réponse
- 4. La réponse est non : construire un contre-exemple avec par exemple une projection p sur Vect ((1,0)) parallèlement à Vect ((0,1)) dans \mathbb{R}^2 et un automorphisme g tel que $g \circ p = \lambda \operatorname{Id}_E \circ p$ mais tel que g ne commute pas avec p.

Indications pour l'exercice 6:

Le cas a = 0 est facile. Si $a \neq 0$, remarquer que A est de rang 1 (donc la valeur propre 0 a une multiplicité égale à n - 1), et A possède une autre valeur propre évidente...

Utiliser les sous-espaces propres de A pour trouver ceux de B.

Indications pour l'exercice 7:

- 1. Si E_{λ} désigne le sous-espace propre de u associé à la valeur propre λ , utiliser la caractérisation $v(x) \in E_{\lambda} \iff u(v(x)) = \lambda v(x)$.
- 2. Considérer la restriction de v à un sous-espace propre E_{λ} de u. Cette restriction est un endomorphisme de E_{λ} diagonalisable...

Indications pour l'exercice 8 :

- 1. (a) Les valeurs propres d'une matrice triangulaire supérieure se lisent sur sa diagonale.
 - (b) Prendre deux matrices triangulaires supérieures et utiliser la question précédente.
- 2. Il suffit d'écrire le changement de base.
- 3. (a) Penser aux formules de duplications de cos et sin
 - (b) La question précédente fournit une recette pour trouver une matrice A dont le carré est une matrice diagonale et qui satisfait la propriété demandée.

Indications pour l'exercice 9:

- 1. Vérifications d'usage
- 2. Si $P(X) = X^n$, alors $\psi(P)(X) = (1 X)^n$.
- 3. Pour bien comprendre l'application ψ_n : si P(X) est un polynôme et que $Q(X) = \psi(P)(X)$, alors Q(X) = P(1 X). On a donc $\psi(Q)(X) = Q(1 X)$...
- 4. (a) Tous les calculs nécessaire ont été fait dans la question 2)
 - (b) Poser $P(X) = a_3X^3 + a_2X^2 + a_1X + a_0$ et déterminer des conditions sur a_3 , a_2 , a_1 , a_0 .
 - (c) Les bases de $Ker(\psi_3 Id)$ et $Ker(\psi_3 + Id)$ sont une base de diagonalisation de ψ_3 .

Indications pour l'exercice 10:

Écrire $(f - \alpha Id) \circ (f + \alpha Id) = f^2 - \alpha^2 Id$.

Si a et b sont inversibles, alors $a \circ b$ est inversible (cours). Que donne la contraposée?

Indications pour l'exercice 11:

- 1. On rappelle qu'un polynôme est nul si et seulement si tous ses coefficients sont nuls.
- 2. Vérifications d'usage
- 3. Exprimer $u(f_0)$, $u(f_1)$, $u(f_2)$, $u(f_3)$ en fonction de (f_0, f_1, f_2, f_3) .
- 4. Les valeurs propres d'une matrice triangulaire supérieure se lisent sur sa diagonal.

Indications pour l'exercice 12:

- 1. Raisonner à l'aide de matrices définies par bloc
- 2. Un raisonnement par équivalence suffit car $A = PB \iff P^{-1}A = B$ lorsque P est inversible.
- 3. Que se passe-t-il dans une base qui diagonalise A?

Indications pour l'exercice 13:

- 1. Vérifications d'usage
- 2. Supposer que P est un vecteur propre associé à λ et intégrer entre 0 et 1 l'égalité obtenue.
- 3. Noter que $(\phi + \alpha \operatorname{Id})(P) = A \times \int_0^1 P(t) dt$ pour simplifier le calcul.
- 4. Raisonner sur les dimension en utiliser l'inégalité de dimensions données par la question précédente.
- 5. Remarquer que ϕ est nilpotent lorsque $\alpha=0$

Indications pour l'exercice 14:

- 1. Vérifications d'usage
- 2. Rappel : deux endomorphismes a et b de E sont égaux ssi $\forall x \in E, a(x) = b(x)$.
- 3. Endomorphisme Particulier cherche valeur propre particulière. Si E_{λ} est un sous-espace propre associé à u, considérer une projection quelconque sur E_{λ} .
- 4. (a) Il suffit d'écrire les définitions
 - (b) Si $\operatorname{Im}(v) \subset \operatorname{Ker}(u \lambda \operatorname{Id})$, on peut voir v comme une application linéaire de E vers $\operatorname{Ker}(u \lambda \operatorname{Id})$
 - (c) Utiliser la caractérisation : u diagonalisable ssi la somme des dimensions des sous-espaces propres est égale à la dimension de E.

Indications pour l'exercice 15:

- 1. Par simple lecture de φ
- 2. Résoudre, on doit trouver que $\operatorname{Ker}(\varphi)$ est une droite vectorielle.
- 3. Théorème du rang
- 4. Oui, les systèmes sont pénibles à écrire mais ils donnent bien $\operatorname{Ker}(\varphi) \cap \operatorname{Im}(\varphi) = \{0\}$ (et les résultats sur les dimensions permettent de conclure immédiatement).
- 5. Rappel: $e^{ib} + e^{-ib} = 2\cos(b)$
- 6. Attention à bien distinguer les cas j=1 et j=2n+1 des autres.
- 7. Utiliser le résultat de la question 5 et l'appliquer au résultat de la question 6.a) pour voir apparaître le facteur commun.
- 8. Montrer φ a 2n+1 valeurs propres **distinctes**.